

Member Lens: Photo Contest Winners

Congratulations to the winners of OPN's 7th annual After Image photo contest, and thanks to all who submitted. We received 46 amazing images.

FIRST PLACE

Alexander R. Albrecht University of New Mexico, U.S.A.

> Laser beams of three primary colors are guided inside streams of liquid into a ceramic bowl, where they combine to form white light. "This image beautifully demonstrates total internal reflection and three-color mixing, creating a visceral, interactive tutorial for optical fiber technology, modern display technology, Rayleigh scattering, and even integrating sphere technology," says just Brian Monacelli. According to judge Carlos Lopez-Mariscal, "It captures simultaneously the working principle of fiber optics and additive color in one simple experiment."

SECOND PLACE Page King

College of Optical Sciences, Tucson, Ariz., U.S.A.

> A green laser is sent through a diffraction grating and then refracted through a glass sphere. "The combination of several optical phenomena—diffraction, refraction, reflection and laser light—create a compelling image," says judge Bob Jopson.

Bob Guenther, adjunct professor of physics at Duke University and retired physicist in the Army Research Office. He also works at a small business called Applied Quantum Technologies.

Bob Jopson, member of the technical staff at Alcatel-Lucent working on lightwave systems and chair of OPN's editorial advisory committee.

Carlos López-Mariscal, researcher at the U.S. Naval Research Laboratory who works on developing coherent imaging methods.

Brian Monacelli, senior research scientist with the Optical Sciences Company (tOSC) and a photonics instructor at Irvine Valley College. He manages OPN's Engineering column.

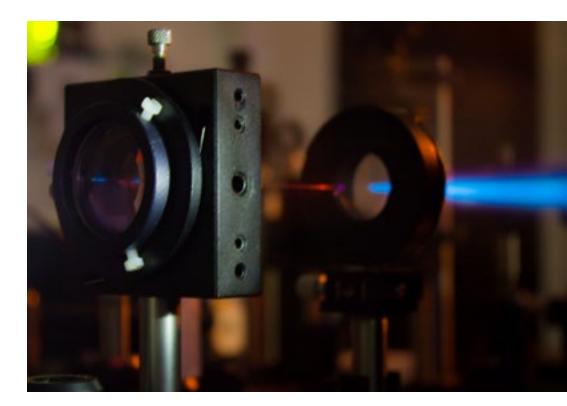
Steve Wilk, engineer with Bodkin Design and Engineering. He manages the Light Touch column.

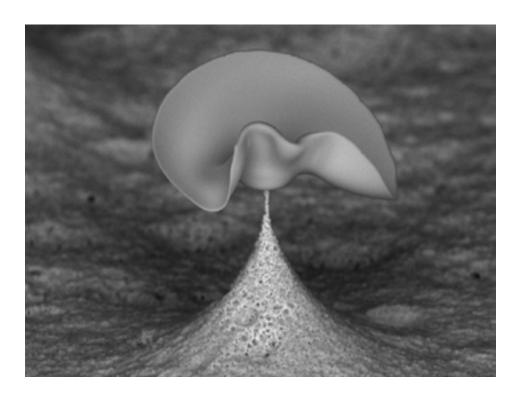
THIRD PLACE

Zotán György Horváth Wigner Research Center for Physics, Hungary

> shadow, as all of the weak plasmas are transparent in the visible. According to judge Steve Wilk, "It provides a modern interpretation of Michael Faraday's demonstration of the optical density of a candle flame, using laser light instead of an incandescent lamp."

HONORABLE MENTION Samuel F. Pellicori


Pellicori Optical Consulting, U.S.A.


Hydrophobicity is demonstrated by an agave leaf. A high contact angle causes condensed dew to be shed completely and collected at the plant's core.

HONORABLE MENTION

Rocio Borrego-Varillas Universidad de Salamanca, Spain

A diffractive lens is used to focus near infrared femtosecond pulses in a sapphire plate for tunable supercontinuum generation. According to Jopson, "the visible wavelengths in the supercontinuum together with the use of bulk optics provide an obvious demonstration of frequency conversion."

HONORABLE MENTION Kelvin Kuo

University of Southern Calif., U.S.A.

Van Gogh's Ear: Ytterbium-doped silica sol-gel microdisk reflowed with a $\rm CO_2$ laser.

Visit www.osa-opn.org/home/gallery/ for a gallery of all the submissions to this year's After Image photo contest.